首页> 外文OA文献 >Near-optimal asymmetric binary matrix partitions
【2h】

Near-optimal asymmetric binary matrix partitions

机译:近似最优不对称二进制矩阵分区

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the asymmetric binary matrix partition problem that was recentlyintroduced by Alon et al. (WINE 2013) to model the impact of asymmetricinformation on the revenue of the seller in take-it-or-leave-it sales.Instances of the problem consist of an $n \times m$ binary matrix $A$ and aprobability distribution over its columns. A partition scheme $B=(B_1,...,B_n)$consists of a partition $B_i$ for each row $i$ of $A$. The partition $B_i$ actsas a smoothing operator on row $i$ that distributes the expected value of eachpartition subset proportionally to all its entries. Given a scheme $B$ thatinduces a smooth matrix $A^B$, the partition value is the expected maximumcolumn entry of $A^B$. The objective is to find a partition scheme such thatthe resulting partition value is maximized. We present a $9/10$-approximationalgorithm for the case where the probability distribution is uniform and a$(1-1/e)$-approximation algorithm for non-uniform distributions, significantlyimproving results of Alon et al. Although our first algorithm is combinatorial(and very simple), the analysis is based on linear programming and dualityarguments. In our second result we exploit a nice relation of the problem tosubmodular welfare maximization.
机译:我们研究了Alon等人最近引入的非对称二进制矩阵分配问题。 (WINE 2013),以不对称信息对卖方接受或离开销售中的收入的影响进行建模。问题的实例包括:$ n \ times $$二进制矩阵$ A $和概率分布它的列。分区方案$ B =(B_1,...,B_n)$由$ A $的每一行$ i $组成的分区$ B_i $。分区$ B_i $充当行$ i $上的平滑运算符,该分区将每个分区子集的期望值按比例分配给其所有条目。给定方案$ B $产生平滑矩阵$ A ^ B $,则分区值是$ A ^ B $的预期最大列条目。目的是找到一种分区方案,以使最终的分区值最大化。对于概率分布均匀的情况,我们提出了9/10美元的近似算法,对于非均匀分布的情况,我们提出了($ 1-1 / e)$近似算法,这大大改善了Alon等人的结果。尽管我们的第一个算法是组合的(并且非常简单),但是分析是基于线性规划和对偶参数的。在我们的第二个结果中,我们利用了问题与次模块化福利最大化之间的良好关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号